Mplus code for mediation, moderation, and moderated mediation modelsModel 70 (latent variable version): 1 or more mediators, in parallel if multiple (example uses 1), 2 moderators, both moderating the Mediator- DV path with all 2-way and 3-way interactions, 1 of which also moderates the IV-Mediator path Example Variables: 1 latent predictor X measured by 4 observed variables X1-X4, 1 latent mediator M measured by 4 observed variables M1-M4, 2 latent moderators W and V, each measured by sets of 4 observed variables W1-W4 and V1-V4 respectively, 1 latent outcome Y measured by 4 observed variables Y1-Y4 Preliminary notes: The code below assumes that
  Model Diagram (factor indicator variables omitted for space/clarity reasons): ![]()   Statistical Diagram (factor indicator variables omitted for space/clarity reasons): ![]()   Model Equation(s):
Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
 
Algebra to calculate indirect and/or conditional effects by writing model as Y = a + bX:
Y = b0 + b1M + b2W + b3V + b4MW + b5MV + b6WV + b7MWV + c'X
Y = b0 + b1(a0 + a1X + a2W + a3XW) + b2W + b3V + b4(a0 + a1X + a2W + a3XW)W + b5(a0 + a1X + a2W + a3XW)V + b6WV + b7(a0 + a1X + a2W + a3XW)WV + c'X
Y = b0 + a0b1 + a1b1X + a2b1W + a3b1XW + b2W + b3V + a0b4W + a1b4XW + a2b4WW + a3b4XWW + a0b5V + a1b5XV + a2b5WV + a3b5XWV + b6WV + a0b7WV + a1b7XWV + a2b7WWV + a3b7XWWV + c'X
Y = (b0 + a0b1 + a2b1W + b2W + b3V + a0b4W + a2b4WW + a0b5V + a2b5WV + b6WV + a0b7WV + a2b7WWV) + (a1b1 + a3b1W + a1b4W + a3b4WW + a1b5V + a3b5WV + a1b7WV + a3b7WWV + c')X
One indirect effect(s) of X on Y, conditional on W, V:
a1b1 + a3b1W + a1b4W + a3b4WW + a1b5V + a3b5WV + a1b7WV + a3b7WWV = (a1 + a3W)(b1 + b4W + b5V + b7WV)
One direct effect of X on Y:
c'
 
Mplus code for the model:
! Latent predictor variable X measured by X1-X4
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 ANALYSIS:
! In model statement first state measurement model
MODEL:
! Measurement model
 
  W@1;
  V@1;
! Create latent interactions
! Fit structural model and name parameters
   Y ON X(cdash);
   M ON X (a1);
! Use model constraint subcommand to test conditional indirect effects
! 2 moderators, 3 values for each, gives 9 combinations
MODEL CONSTRAINT:
    LOW_W = -1;   ! -1 SD below mean value of W
    LOW_V = -1;   ! -1 SD below mean value of V
! Calc conditional indirect effects for each combination of moderator values
    ILOW_LOV = a1*b1 + a3*b1*LOW_W + a1*b4*LOW_W + a3*b4*LOW_W*LOW_W +     ILOW_MEV = a1*b1 + a3*b1*LOW_W + a1*b4*LOW_W + a3*b4*LOW_W*LOW_W +     ILOW_HIV = a1*b1 + a3*b1*LOW_W + a1*b4*LOW_W + a3*b4*LOW_W*LOW_W + ! Calc conditional total effects for each combination of moderator values
    TLOW_LOV = ILOW_LOV + cdash;
    TLOW_MEV = ILOW_MEV + cdash;
    TLOW_HIV = ILOW_HIV + cdash;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
    PLOT(PLOW_LOV PMEW_LOV PHIW_LOV PLOW_MEV PMEW_MEV PHIW_MEV     LOOP(XVAL,-3,3,0.1);
    PLOW_LOV = ILOW_LOV*XVAL;     PLOW_MEV = ILOW_MEV*XVAL;     PLOW_HIV = ILOW_HIV*XVAL; PLOT:
OUTPUT:
 
Return to Model Template index.
To cite this page and/or any code used, please use:
|
|
|
|
|
|
|
|