Mplus code for mediation, moderation, and moderated mediation modelsModel 19 (latent variable version): 1 or more mediators, in parallel if multiple (example uses 1), 2 moderators both moderating the Mediator-DV path and direct IV-DV path, all 2-way and 3-way interactions Example Variables: 1 latent predictor X measured by 4 observed variables X1-X4, 1 latent mediator M measured by 4 observed variables M1-M4, 2 latent moderators V and Q, each measured by sets of observed variables V1-V4 and Q1-Q4 respectively, 1 latent outcome Y measured by 4 observed variables Y1-Y4 Preliminary notes: The code below assumes that
  Model Diagram (factor indicator variables omitted for space/clarity reasons): ![]()   Statistical Diagram (factor indicator variables omitted for space/clarity reasons): ![]()   Model Equation(s):
Y = b0 + b1M + b2MV + b3MQ + b4MVQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ + c6'VQ + c7'XVQ
 
Algebra to calculate indirect and/or conditional effects by writing model as Y = a + bX:
Y = b0 + b1M + b2MV + b3MQ + b4MVQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ + c6'VQ + c7'XVQ
Y = b0 + b1(a0 + a1X) + b2(a0 + a1X)V + b3(a0 + a1X)Q + b4(a0 + a1X)VQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ + c6'VQ + c7'XVQ
Y = b0 + a0b1 + a1b1X + a0b2V + a1b2XV + a0b3Q + a1b3XQ + a0b4VQ + a1b4XVQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ + c6'VQ + c7'XVQ
Y = (b0 + a0b1 + a0b2V + a0b3Q + a0b4VQ + c2'V + c3'Q + c6'VQ) + (a1b1 + a1b2V + a1b3Q + a1b4VQ + c1' + c4'V + c5'Q + c7'VQ)X
One indirect effect(s) of X on Y, conditional on V, Q:
a1b1 + a1b2V + a1b3Q + a1b4VQ = a1(b1 + b2V + b3Q + b4VQ)
One direct effect of X on Y, conditional on V, Q:
c1' + c4'V + c5'Q + c7'VQ
 
Mplus code for the model:
! Latent predictor variable X measured by X1-X4
USEVARIABLES = X1 X2 X3 X4 M1 M2 M3 M4 ANALYSIS:
! In model statement first state measurement model
MODEL:
! Measurement model
 
  V@1;
  Q@1;
! Create latent interactions
! Fit structural model and name parameters
   Y ON X (cdash1);
   M ON X (a1);
! Use model constraint subcommand to test conditional indirect effects
! 2 moderators, 3 values for each, gives 9 combinations
MODEL CONSTRAINT:
    LOW_V = -1;   ! -1 SD below mean value of V
    LOW_Q = -1;   ! -1 SD below mean value of Q
! Calc conditional indirect effects for each combination of moderator values
    ILOV_LOQ = a1*b1 + a1*b2*LOW_V + a1*b3*LOW_Q + a1*b4*LOW_V*LOW_Q;
    ILOV_MEQ = a1*b1 + a1*b2*LOW_V + a1*b3*MED_Q + a1*b4*LOW_V*MED_Q;
    ILOV_HIQ = a1*b1 + a1*b2*LOW_V + a1*b3*HIGH_Q + a1*b4*LOW_V*HIGH_Q;
! Calc conditional direct effects for each combination of moderator values
    DLOV_LOQ = cdash1 + cdash4*LOW_V + cdash5*LOW_Q + cdash7*LOW_V*LOW_Q;
    DLOV_MEQ = cdash1 + cdash4*LOW_V + cdash5*MED_Q + cdash7*LOW_V*MED_Q;
    DLOV_HIQ = cdash1 + cdash4*LOW_V + cdash5*HIGH_Q + cdash7*LOW_V*HIGH_Q;
! Calc conditional total effects for each combination of moderator values
    TLOV_LOQ = ILOV_LOQ + DLOV_LOQ;
    TLOV_MEQ = ILOV_MEQ + DLOV_MEQ;
    TLOV_HIQ = ILOV_HIQ + DLOV_HIQ;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
    PLOT(PLOV_LOQ PMEV_LOQ PHIV_LOQ PLOV_MEQ PMEV_MEQ PHIV_MEQ     LOOP(XVAL,-3,3,0.1);
    PLOV_LOQ = ILOV_LOQ*XVAL;     PLOV_MEQ = ILOV_MEQ*XVAL;     PLOV_HIQ = ILOV_HIQ*XVAL; PLOT:
OUTPUT:
 
Return to Model Template index.
To cite this page and/or any code used, please use:
|
|
|
|
|
|
|
|