Mplus code for mediation, moderation, and moderated mediation modelsModel 17: 1 or more mediators, in parallel if multiple (example uses 1), 2 moderators both moderating both the Mediator-DV and direct IV-DV path Example Variables: 1 predictor X, 1 mediator M, 2 moderators V, Q, 1 outcome Y Preliminary notes: The code below assumes that
  Model Diagram: ![]()   Statistical Diagram: ![]()   Model Equation(s):
Y = b0 + b1M + b2MV + b3MQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ
 
Algebra to calculate indirect and/or conditional effects by writing model as Y = a + bX:
Y = b0 + b1M + b2MV + b3MQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ
Y = b0 + b1(a0 + a1X) + b2(a0 + a1X)V + b3(a0 + a1X)Q + c1'X + c2'V + c3'Q + c4'XV + c5'XQ
Y = b0 + a0b1 + a1b1X + a0b2V + a1b2XV + a0b3Q + a1b3XQ + c1'X + c2'V + c3'Q + c4'XV + c5'XQ
Y = (b0 + a0b1 + a0b2V + a0b3Q + c2'V + c3'Q) + (a1b1 + a1b2V + a1b3Q + c1' + c4'V + c5'Q)X
One indirect effect(s) of X on Y, conditional on V, Q:
a1b1 + a1b2V + a1b3Q = a1(b1 + b2V + b3Q)
One direct effect of X on Y, conditional on V, Q:
c1' + c4'V + c5'Q
 
Mplus code for the model:
! Predictor variable - X
USEVARIABLES = X M V Q Y MV MQ XV XQ;
! Create interaction terms
DEFINE:
ANALYSIS:
! In model statement name each path and intercept using parentheses
MODEL:
   Y ON X (cdash1);
   [M] (a0);
! Use model constraint subcommand to test conditional indirect effects
! 2 moderators, 3 values for each, gives 9 combinations
MODEL CONSTRAINT:
    LOW_V = #LOWV;   ! replace #LOWV in the code with your chosen low value of V
    LOW_Q = #LOWQ;   ! replace #LOWQ in the code with your chosen low value of Q
! Calc conditional indirect effects for each combination of moderator values
    ILOV_LOQ = a1*b1 + a1*b2*LOW_V + a1*b3*LOW_Q;
    ILOV_MEQ = a1*b1 + a1*b2*LOW_V + a1*b3*MED_Q;
    ILOV_HIQ = a1*b1 + a1*b2*LOW_V + a1*b3*HIGH_Q;
! Calc conditional direct effects for each combination of moderator values
    DLOV_LOQ = cdash1 + cdash4*LOW_V + cdash5*LOW_Q;
    DLOV_MEQ = cdash1 + cdash4*LOW_V + cdash5*MED_Q;
    DLOV_HIQ = cdash1 + cdash4*LOW_V + cdash5*HIGH_Q;
! Calc conditional total effects for each combination of moderator values
    TLOV_LOQ = ILOV_LOQ + DLOV_LOQ;
    TLOV_MEQ = ILOV_MEQ + DLOV_MEQ;
    TLOV_HIQ = ILOV_HIQ + DLOV_HIQ;
! Use loop plot to plot conditional indirect effect of X on Y for each combination of low, med, high moderator values
    PLOT(PLOV_LOQ PMEV_LOQ PHIV_LOQ PLOV_MEQ PMEV_MEQ PHIV_MEQ     LOOP(XVAL,1,5,0.1);
    PLOV_LOQ = ILOV_LOQ*XVAL;     PLOV_MEQ = ILOV_MEQ*XVAL;     PLOV_HIQ = ILOV_HIQ*XVAL; PLOT:
OUTPUT:
 
Return to Model Template index.
To cite this page and/or any code used, please use:
|
|
|
|
|
|
|
|